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Abstract: In this work, the authors present results for classification of different classes of targets (car, single and multiple
people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for
detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and
microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered,
namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for
different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some
cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are
demonstrated in this study, and possible shortcomings and outstanding issues are discussed.

1 Introduction
Autonomous vehicles have been gaining significant interest in the
past few years, with considerable attention and investments from
technology-intensive companies (such as data management and
algorithms developers, vehicles and electronic sensors and systems
manufacturers), governments and academic research community,
and media and the general public [1–3]. As research in this vast
field grows, an attempt of standardising the different levels of
autonomy that advanced driver assistance systems can enable in
ground vehicles has been made, specifying six levels ranging from
0 to 5, from rather standard car accessories such as antilock
braking system, to fully autonomous dynamic driving with little to
no inputs from the human driver [2].

To achieve complete driving autonomy, the capability of
sensing the surrounding environment and other moving entities,
other vehicles or humans, and animals, is paramount. Different
sensing technologies have been proposed [4]. Cameras are suited
for objects classification exploiting colour and texture data, and
can be relatively cheap compared with the other types of sensors,
but may suffer from the limited depth of view and adverse weather
and light conditions, as well as requiring high data processing
power, depending on the image classification algorithm.

LiDAR uses rotating laser arrays to generate an accurate 3D
map of the surrounding environment around the autonomous
vehicle, but this type of sensors are still rather expensive and may
require significant computational power to address the adverse
effect of light and weather (rainy, foggy, snowy conditions).

Radar sensors provide the advantage of not being affected by
light and weather conditions, as well as exploiting mature range-
Doppler and classification processing developed for different end
applications over the years [5]. However, the applicability and
adaptation of these techniques to the specific automotive context,
and the development of the most suitable processing to fuse
information from different radar channels and heterogeneous
sensors are still open research questions. In particular, significant
research in the context of automotive radar has been devoted to the
issue of detecting and classifying accurately vulnerable road users,
such as pedestrians, to preserve their safety.

One of the earliest classification studies on automotive radar
reported over 90% accuracy when distinguishing vehicles and
pedestrians [6], as well as other objects [7], by extracting features

from micro-Doppler (MD) signatures combined with joint
probability data association tracking, in order to account for
discrepancies in amplitude and shape due to the aspect angle
changes. Although the use of trackers worn by vulnerable road
users would help their detection and classification [8], the
reliability of the whole system would be poor, as relying uniquely
upon compliance of them wearing the devices.

Other studies looked at using range-Doppler maps as the
domain to perform classification. Object tracking through
clustering algorithms and a linear classifier was used to distinguish
vehicles and scenarios of walking pedestrians in [9], and in [10]
features related to the size, orientation, and frequency of the
pedestrians’ step were used in conjunction with ordered statistics-
constant false alarm rate (OS-CFAR) and density-based cluster
algorithm. Further works focused on using different domains of
information to achieve vehicles–pedestrians classification, such as
[11] through the phase characteristics (coherent/non-coherent) of
the object signature, and [12] through features related to the
differences in radar cross section (RCS) between the different
classes of targets, used together with a support vector machine
classifier. As systems working at a higher frequency, tens but also
hundreds of GHz, become available, work has been carried out to
characterise the radar signatures of pedestrians in the automotive
context, such as in [13–15] which considers the frequency ranges
around 300 GHz. Another group of studies looked at characterising
the radar signatures of cyclists, to highlight differences and
similarities with those of pedestrians and vehicles that can be
useful to improve their detection and classification [16–18].
Bicycles can travel at significantly higher speed than pedestrians
and present high manoeuvrability on the road, as well as at the
same time exhibiting low RCS compared with vehicles; they are
therefore a challenging class of targets for automotive radar
applications.

Many of the classification studies considered some form of
‘handcrafted’ extraction process on the radar data in order to obtain
the most suitable combination of features to maximise
classification accuracy [19, 20]; this often requires significant
expertise and inputs from the human radar operator/engineer, thus
not lending too well to achieving reliable automatic classification
in the large diversity of situations and scenarios expected for
automotive radar. To address this issue, an emerging stream of
work in the literature has been looking at neural networks as a

IET Radar Sonar Navig.
© The Institution of Engineering and Technology 2018

1



processing tool to bypass the feature extraction step and enable
automatic selection of the most suitable features and meaningful
information for classification within the network itself. One of the
first work in this aspect was [21], in which deep convolutional
neural networks (DCNNs) were given spectrograms directly as
input data to distinguish four classes of targets (humans, dogs,
horses and cars signatures), and seven different human activities.
The DCNN was a scaled-down model of the famous VGG16
(Visual Geometry Group) network that won the ImageNet
classification challenge in 2014, and accuracy in the region of 91%
was achieved for target identification. Further work on the use of
convolutional neural networks (CNNs) in the context of human
activity recognition for assisted living has been presented [22],
focusing on aspects such as most suitable pre-processing and time-
frequency distribution for the MD signatures [23], combination of
information from different radar domains including range-Doppler
and range-time to enhance performance [24], different architectures
mixing auto-encoders with CNNs [25, 26], and challenges and
strategies to train deep networks effectively with limited
experimental radar data available [27]. Other works have looked at
classifying different human gaits in the context of area surveillance
using a ground-based radar, in particular identifying individual
pedestrians as opposed to group of multiple people, either using
CNNs or recurrent neural networks (RNNs) on the spectrograms
[28, 29], and at classification of armed/unarmed personnel using a
multi-static radar [30].

In this work, we present and discuss a modular pipelined
approach to achieve near real-time radar data processing and
multiple moving object tracking and to subsequently classify these
objects. Three different neural network architectures have been
explored – a downscaled version of the network VGG16, utilising
the same block structure; the very deep ResNET-50 [31], which
uses shortcuts between network blocks to avoid over-fitting and
achieve better generalisation; and an innovative CNN + long short-
term memory (LSTM) architecture, which is able to extract
features from MD spectrogram segments, and learn their
representation as time series (sequences of data). This is an
innovative approach, as the radar data will be considered by the
LSTM network part not as snapshot spectrogram images (as
currently done in many works in the literature [22–28]), but as
temporal data sequences. Although demonstrated on preliminary
results on a small experimental dataset, this classification approach
may prove well suited to radar data, exploiting the inherent
information from a sequence of radar waveforms, rather than
casting the problem as the classification of images.

Although the dataset of experimental samples is small, the work
presented here aims to demonstrate the potential of this approach.
It provides a proof of concept evaluation of the lean
implementation of radar signal processing necessary for radar MD-
based classification, and of different architectures of neural
networks that do not require manual fine-tuning of parameters of
external inputs to guide the feature extraction process.

These processing steps have been implemented with the
following objectives:

• To use real experimentally-gathered data for training and testing
the neural networks, in order to investigate the generalisation
capabilities of the network architectures beyond the ideal cases
of using simulated data. This includes the implementation of

radar signal processing for detection and tracking of multiple
targets, which can provide good performance even in the
presence of significant noise generated within the radar system.

• To have a significantly low classification latency – below 0.5 s,
since studies have shown that the average driver reaction time is
around 0.7 s [32].

• To use the MD spectrograms directly as input to the classifier
and network, avoiding handcrafted features (e.g. MD bandwidth
and frequency, Cepstral coefficients, moments of vectors
extracted by singular value decomposition, and many others
proposed in the literature [20]). This allows avoiding possible
loss of relevant information and fine-tuning of the many
parameters involved when defining the feature extraction
algorithms.

The remainder of this paper is organised as follow. Section 2
describes the experimental setup, the radar kit used, and the data
collection protocol. Section 3 introduces the implementation of the
radar signal processing developed, and the structure of the neural
networks used in this study. Section 4 presents comments on the
experimental results. Finally, Section 5 draws conclusions and
discusses some possible future work.

2 Experimental setup and data collection
All data have been collected using the TEF810X fully integrated
automotive radar transceiver manufactured by NXP
Semiconductors and S32R274 radar micro-controller unit. The
radar operation mode was configured as frequency modulated
continuous wave, with linear chirp modulation, and the parameters,
shown in Table 1. These parameters were empirically found to
provide the clearest MD signatures at visual inspection, as well as
providing a reasonable compromise in terms of range resolution,
Doppler unambiguous range, and data throughput for fast
transferring and processing. The system had one transmitter and
four receiver channels, and digitised data were transferred from the
micro-controller unit to a computer via User Datagram Protocol
(UDP) packets. These packets were then decoded to form ‘frames’,
matrices with 512 rows and 256 columns, which essentially
correspond to range-time matrices with 256 radar chirp and 256
[after removing fast Fourier transform (FFT) mirroring] range bins
for each chirp. The time for one frame to be transmitted and
received for processing (for all four receiver channels) is set
internally in the micro-controller unit (MCU) as 50 ms, and this is
a firmware parameter that cannot be modified in this version of the
system. 

Three different types of movements and targets were recorded,
namely a single person walking at an average speed of 4–5 km/h
(type 1), a car accelerating and decelerating (type 2), a bicyclist
following the trajectory of an eight-figure (type 3), and finally two
people walking side by side (type 4). All activity types were
performed with objects moving towards and away from the radar
covering a distance of around 0–17 m, at 0 degree aspect angle
(radial trajectory with respect to the line-of-sight of the radar), with
some little variability for the bicyclist to turn when cycling towards
and away from the radar.

The radar was positioned ∼0.7 m above the ground, to
correspond to the height at which the automotive radar is usually
mounted on a car. This also allows to capture the micro-motions
contributing most to the MD effect, such as hands, torso and the
upper leg parts from walking people; the body of a moving vehicle;
and bicycle frame/pedalling legs. Around 30 min of data were
collected for the single person walking and the car, and ∼15 min
each for the bicycle and the multiple people class. The raw
digitised data were then divided into blocks, which are the starting
point of the processing steps described in the next section.

3 Data processing and neural networks
architecture
As described in Section 1, a lot of research has been conducted on
target classification using the MD signature of objects. When the
target signature is spread across many different range bins, the

Table 1 Radar parameters for the data analysed in this
paper
number of samples per chirp 512
number of chirps per frame 256
chirp bandwidth 1.0 GHz
chirp duration 25.6 μs
carrier frequency 76.5 GHz
analogue to digital converter (ADC) sampling
frequency

20 MHz

transmitter-receiver (TX/RX) channels 1/4
radar field of view (azimuth and elevation)  ±35° at 50 m/7.5°
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different target contributions need to be aggregated prior to
performing short time Fourier transform (STFT ), or an alternative
time-frequency distribution, and this is even more important in
case of multiple targets crossing their trajectories. To address this
issue and easily track multiple moving targets, we have
implemented the following processing on the raw data obtained
from the NXP radar. The different processing steps have been
summarised in Fig. 1.

• Perform FFT on raw digitised data to convert them into the
range-time domain, and apply a fourth-order Butterworth
infinite impulse response high-pass filter with 0.04 Hz cut-off to
remove stationary objects (i.e. objects with Doppler signature at
0 Hz or close to that value).

• Apply OS-CFAR algorithm [33] to perform target detection and
reduce the undesired contribution from noise and clutter.

• Detect the position of the targets (i.e. the range bins they
occupy) for a given frame and store these coordinates in a
detection matrix.

• Input the detection matrix frame-wise in an algorithm, which
combines constant acceleration Kalman filtering and the
Hungarian algorithm [34]. The former would produce a better
estimation of the target position, as well as continue to output
predictions, even if frames are temporarily lost or corrupted. The
latter would constantly assign identities to the object detections,
based on the estimates from the Kalman filter. The algorithm
can also take into consideration new objects entering the radar
field of view, or those leaving it, using markers for each track.

• Concatenate several range-time frames and generate segments of
MD signatures using the object track position estimates, i.e. the
range bins where the target signature is located. The duration of
the overall MD signature can be varied depending on the
classification algorithm just by concatenating more or less
frames together.

• Use the generated MD spectrograms to train and test classifiers
based on neural networks.

Using the aforementioned approach, samples of MD signatures
have been generated by concatenating eight 0.25 s segments to
provide spectrograms that are 2 s long. Examples of MD
spectrograms plotted using the method described above for the
different cases are shown in Fig. 2, with one spectrogram for each
class of targets considered in this work. Even through visual
inspection, it is possible to see some discriminant features of the
different classes. For example, the single human (Fig. 2a) appears
to present some peaks around the main Doppler component, as
expected for the swinging of limbs. This effect becomes more
blurred for multiple people (Fig. 2b) because their movements are
not synchronised. For the car class (Fig. 2d), we can see a clear
main Doppler shift with no major additional components, whereas
the bicycle (Fig. 2c) presents an intermediate situation with a clear

main Doppler component, plus some additional effects due to the
movement of the legs while cycling. The STFT window size was
512 points (equal to two concatenated range-time frames), with
95% overlap. Although segmentation is present as an artefact of the
concatenation process, it does not seem to affect the learning
capabilities of the neural network classifiers, as will be further
demonstrated in the next section. 

After removing the unsuitable datasets where there was false
target detection and hence no clear MD signature, we generated 60
samples for movement types 1 and 2 each (single person walking
and car), 22 samples for type 3 (bicycle), and 44 samples for type 4
(two people walking together). The samples for each class are
created using data collected at different time instances rather than
continuously and this helps reduce the intra-class correlation
between the samples. The data were partitioned into training and
testing subsets to validate the neural network performance with an
80/20% proportion, and this partition was performed randomly.
The networks used the training data for learning and the test data
for validation. Furthermore, all evaluations were performed using
the same number of samples for each class, to avoid class
imbalance, with the final number of samples governed by the class
with the least datasets. Four types of evaluations were performed,
in particular:

• Binary classification of type 1 versus type 2, a single person
walking versus car.

• Three-class problem with the single car, a single person, and
single bicycle as classes of interest.

• Three-class problem with the single car, a single person, and two
people.

• Four-class problem with all the available data.

Three different network architectures were used for the
classification of experimental data, detailed as follows. A pictorial
representation of the different layers in each architecture is shown
in Fig. 3, where different functionalities of the layers have been
highlighted in different colours. The input to the networks is a 3D
structure containing the 2 s long spectrogram samples for each of
the four receiver channels of the radar, so that the overall
dimensions of each input samples are 4 (number of channels) ×512
(number of Doppler bins for each spectrogram) × 120 (number of
time bins for each spectrogram, for eight segments). Each
spectrogram is normalised between 0 and 1 and centred around the
mean value. 

Network I: This is a VGG-like convolutional neural network, as
in Fig. 3a. Each ‘block’ consists of a convolutional layer, with a
different number of filters of the same size, and a pooling layer,
which reduces the dimensionality of the block output by a factor of
4, selecting the maximum value in the kernel. The convolutional
filters would learn features from the datasets, specific for each
class. The addition of a dropout layer (20%) has been proven in the

Fig. 1  Block diagram of the multi-target classification system
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literature to improve learning regularisation [35], which is
paramount for a small amount of data like in this case. Finally,
three fully connected layers are used, where each neural unit in the
layer is connected to the rest. Rectified linear unit activation
function has been used in all but the last layer, where the function
used is Softmax. In this and in all subsequent models, Adam
optimizer algorithm was implemented, due to its very fast
convergence rate and reliability.

Network II: This architecture is shown in Fig. 3b and is based
on a residual network, in which the input and output of a
convolutional block are connected via a shortcut. In very deep
networks of the VGG type, the back-propagation gradient tends to

diminish as it propagates through the network layers, hence having
little effect on the initial ones. This is partly because, in a VGG
type architecture, subsequent blocks have to learn data features
anew, from the output of the preceding block. However, due to the
shortcuts in a ResNet architecture, the blocks only have to learn the
residual of the output from the preceding one. This largely
improves the representation capability, allowing for correct
classification of data with very similar features, as it is the case
with radar spectrograms. In this work, the ResNet-50 architecture
has been used [31].

Network III: This architecture is based on RNNs and is shown
in Fig. 3b. RNNs have been used for years to analyse time series

Fig. 2  Examples of spectrograms for different targets:
(a) Single person walking, (b) Two people walking together, (c) Bicycle, (d) Car

 

Fig. 3  Representation of the different network architectures
(a) Convolutional neural network similar to VGG type, (b) Convolutional residual network, (c) Combination of convolutional and recurrent LSTM network
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data, for example in speech processing and acoustics, and have
been demonstrated to work very well to predict and classify
sequences of data. Out of different types of RNNs, LSTM networks
are mainly used in practice, because they can overcome the issue of
vanishing/exploding back-propagation gradients [36] and are able
to learn the representation of longer sequences (around 1000
instances) compared with other architectures of recurrent networks.
In this work, we have modelled each 0.25 s-long segment in a 2 s
spectrogram sample as instances from a data sequence, with
variable length, depending on the requirements. The convolutional
part of the network would extract features from single segments,
which would then serve as input to the LSTM part, analysing their
progression and evolution with time.

4 Classification results
Initially, the effect on the classification performance of using data
from a subset of the available four receiver channels is evaluated
using 5-fold validation with the VGG-like convolutional network
(see Fig. 3a). This was done on the binary classification problem of
distinguishing a single person and a car. The results in terms of
classification accuracy and standard deviation across the 5-fold
tests are shown in Table 2, where the number of channels used
increased from one to all four We can see that the results are very
similar with little or no difference with the number of channels.
This may be because the receiver antennas are mounted very close
to each other in this version of the radar kit, hence the aspect
angles on the target at ranges of a few metres are practically the
same so that the different channels do not seem to provide
additional information. Nevertheless, all further evaluations have
been performed using samples containing all four channels, due to
the expected increase in the number of hardware channels in a near
future as technology improves. This would provide bigger data
discrepancy, hence better network generalisation for objects
moving at different aspect angles, especially for less favourable
trajectories for MD-based classification (i.e. trajectories which are
tangential or close to tangential to the radar field of view). 

When evaluating the performance of a neural network, two
main indicators are generally used, namely the accuracy, which
shows the percentage of correctly classified samples, and the
logarithmic loss measure, which is the negative logarithm of the
network-predicted probability for a dataset to belong to a certain
class, taking into account the true class label. Back-propagation
algorithms strive to minimise this loss and forcing this to zero by
adjusting the weights of the network layers at the training stage. By
analysing how the loss gradient changes over time, one can judge

for the generalisation capabilities of a network, i.e. whether it
overfits on the training data, compromising its ability to classify
correctly new test/validation data.

An initial test compared the VGG-like network and the residual
network for the binary classification problem of moving car versus
single person walking. The validation accuracy of the residual
network achieved 100% (Fig. 4) after only 200 epochs with a batch
size of eight datasets (i.e. the weights of the network have been
updated every eight input samples). The validation accuracy of the
VGG-like network was in the range of 98%, as shown in Fig. 4 and
Table 2. In terms of loss function for training and validation, Fig. 5
shows these over different epochs. 

When using the VGG-like CNN (Fig. 5a), both training and test
losses fluctuate heavily, and although the test loss continues to
decrease, its value at epoch 100 is significantly above the training
loss, which tends to zero, and this may be a sign of overfitting as
the network has nearly exhausted its capability to learn from the
available data. In contrast, the residual network losses exhibit an
almost non-existent fluctuation, even using a very small number of
datasets as in this case. Both training and validation loss continue
to decrease, and their values at epoch 200 may be an indication of a
significant potential for further learning, as the training loss has not
reached values close to zero. This, combined with the very high
accuracy score close to 100%, seems to confirm the assumption
that the use of residual networks for this classification task would
yield better, more generalised results.

The same binary classification problem has been evaluated on
the CNN-LSTM network architecture and the results are presented
in Fig. 6 in terms of accuracy and loss function for training and
testing. In this case, we have considered two different temporal
durations of the input samples, namely 2 s (equal to eight MD
segments) as done previously for the other networks, and 0.5 s
(equal to just two segments) in order to reduce the latency required
to provide a classification result. 

Comparing the performance of this CNN-LSTM network on 2 s
long samples (Fig. 5a) with the previous architectures (Fig. 4), we
can see that the overall validation accuracy is reduced (∼92%) and
there is very significant overfitting, as while the training loss has
reached values close to zero, the validation loss remains stationary
at a non-zero value. Looking at the results for 0.5 s long samples,
despite the decreased latency, the overall accuracy appears to be
very significant, in the range of 99%. This increased accuracy
could be related to the combined effect of having a larger dataset of
samples for training and testing (as each 2 s spectrogram was
divided into 0.5 s segments, with a 4-fold increase in the dataset
size), but also to the fact that the tested LSTM architecture might

Table 2 Five-fold evaluation test accuracy when using a different number of radar channels for binary classification car versus
person walking
Number of channels 1 2 3 4
test accuracy /standard deviation 98.33/2.04% 98.33/2.04% 97.50/2.04% 98.33/2.04%
 

Fig. 4  Neural network performance (accuracy) for
(a) VGG-like network, (b) Residual network
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be more capable to infer relevant features from shorter sequences.
There is some residual overfitting (validation loss stationary with
training loss already close to zero), and this can be caused by the
use of a relatively shallow convolutional layer before the LSTM
layer in this architecture (see Fig. 3c), as this may not be able to
learn relevant features from the input data.

Subsequently, we have analysed three-class problems by adding
to the binary dataset with moving car data and a single person
walking data, either bicycle data or data for two people walking
together. These three-classes problems have been tested with
different network architectures and some results are shown in Table
3. 

The results in Table 3 suggest that adding a different class of
targets can have a very significant impact on the results, and in
general the accuracy is reduced compared with the binary class
scenario analysed before. The CNN-LSTM case shows increased
accuracy when using shorter sequences (from 2 to 0.5 s) for the
classification of the car and single or multiple people, as observed
in Fig. 5. This is not true for the classification scenario involving
the bicycle, where the accuracy degrades from ∼93 to 83%, and
this could be due to the fact the bicycle and car signatures are
similar in such a short period of time (especially as at times the
cyclist was not pedalling but just coasting with the bicycle). The
VGG-like network presents results around 80% for both three-class
problems, which appears to suggest that extending the dwell time
on target for extraction of MD signatures does not provide a
significant classification benefit. This may be due to the specific
settings of the radiofrequency radar parameters and spectrogram
extraction algorithm, which could not capture enough details to
differentiate the spectrograms belonging to each target class. On
average, the CNN-LSTM architecture appears to provide higher
accuracy and therefore better capability to generalise on additional
target classes, making it a promising approach.

In terms of loss functions (not shown here for conciseness), the
CNN-LSTM architecture suffers significantly from overfitting
problem as already noted when commenting Fig. 6 for the binary
classification problem. This poor performance can be linked to the
very shallow convolutional part (two filters, with 5 × 5 kernel size),
which is not able to learn the discriminating details between one
person and two people walking. To evaluate this hypothesis, we

Fig. 5  Neural network performance (loss function) for
(a) VGG-like network, (b) Residual network

 

Fig. 6  CNN-LSTM network performance (accuracy and loss function for both training and validation) when using
(a) 2 s long inputs, (b) 0.5 s long inputs

 
Table 3 Test accuracy for two network architectures
evaluated on three class problems
Evaluation/
network type

VGG-like
CNN (2 s

long
datasets)

VGG-like
CNN (0.5 s

long
datasets)

CNN-
LSTM (2 s

long
datasets)

CNN-
LSTM (0.5 

s long
datasets)

car-person-
bicycle
classification

79% 83% 93% 83%

car-person-2
people
classification

81% 78% 80% 84%
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have run further tests by substituting the convolutional layer of the
CNN-LSTM in Fig. 3c with the VGG-like model in Fig. 3a
(excluding the dropout and fully connected layers). This creates an
alternative CNN-LSTM architecture, where the initial
convolutional part is much deeper than the initial choice with just
one layer. With this alternative architecture, we managed to achieve
87.3% test accuracy after only 200 epochs (an increase of about 3–
4% with respect to the results in Table 3). This was achieved on a
more challenging classification scenario, which includes all four
classes of interest (moving car, a single person walking, bicycle,
and two people walking) and low latency with 0.5 s long
spectrograms. The results in terms of accuracy and loss function
for training and testing are shown in Fig. 7. Although overfitting is
still present, the validation loss is expected to reduce by using a
residual network approach for the convolutional part. 

For completeness, all the above-mentioned tests have been
repeated by training using a kernel (weight) and activity (activation
function) regularising approaches applied on the last fully
connected output layer, with a penalty of 0.01 and 0.001 for the
VGG-like and CNN LSTM networks, respectively. Furthermore,
batch normalisation layers have been used after each activation
function. Both these are common strategies in the literature to help
improve the performance, as they should, in theory, improve the
generalisation capabilities of the network in particular [37].
However, in our case these results appear to show that the
classification accuracy has degraded, as per summary provided in
Table 4 (with 200 epochs training). 

It can be seen that the regularisation and batch normalisation
can at times improve the performance for CNNs (for example, for
the car-person-2 people problem with 0.5 s long datasets, the
accuracy increased ∼10% compared with Table 3), but this is not
always consistent (for example, with the other three-class problem
involving the bicycle the accuracy degraded from 83 to 81%).
Furthermore, results appear to become worse for the CNN-LSTM

network cases. However, the training history over epoch (not
shown here for conciseness) shows a very large variability of the
accuracy, possibly meaning that the CNN-LSTMs need more time
and longer training to converge and exploit effectively
regularisation and batch normalisation (as happened for the VGG-
like network in some cases). This will be considered in future
work, as well as investigating the most suitable hyper-parameter
values (for example the penalty ratio of the regularisation process)
for these specific classification problems, with a small amount of
data available for training effectively.

5 Conclusions and future work
This study has presented results for classification problems in the
automotive radar context using different neural network
architectures. Although validated on a small set of experimental
data, these proof-of-concept results demonstrated benefits
(classification close to 100% in some cases) and potential
shortcomings (overfitting and non-robust generalisation) of
different networks, as well as the importance of choosing suitable
radar parameters and radar signal processing (proper target
detection and tracking) to provide the best input data as possible to
the networks.

Residual networks appear to provide improved performance
compared with simpler convolutional networks when the radar
classification is cast as an image recognition problem among
different spectrograms. Combinations of convolutional and
recurrent networks have also been proposed. One potential problem
with these networks is the overfitting for scenarios with a low
amount of data available, as in this paper, especially if the initial
convolutional part is not deep enough to capture the subtle
differences between spectrograms of different classes of targets.
Further work is needed to characterise how classification
performance could be improved by adding a robust residual
network as convolutional part and multiple LSTM layers in a
mixed CNN-LSTM architecture explored in this study.
Furthermore, one could consider purely recurrent network
architectures without the convolutional part, so that the radar
classification problem is cast as a data sequence classification
(sequence of radar pulses), rather than reducing this to an image
discrimination problem. This would allow exploring the
information in different radar domains other than Doppler-time
(MD) patterns, such as sequences of range profiles or even raw
complex data, which would be an interesting innovative approach.
In any case, priority for further work should aim at collecting a
larger experimental dataset for the training and validation of the
chosen neural networks, especially for the very deep ones where
many parameters need to be tuned. This availability of radar data
for deep learning is a known issue, for both collecting and properly
labelling the data, and strategies such as transfer learning and pre-
training are being explored for its mitigation [27].

In terms of radar architecture, the availability of additional
channels in multiple-input multiple-output, spatially distributed

Fig. 7  Alternative CNN-LSTM network performance (accuracy and loss function for both training and validation) for the four-class classification problem
 

Table 4 Test accuracy for three types of networks (VGG-
like, CNN-LSTM, and VGG-LSTM) on all considered
problems, with regularisation and batch normalisation
Evaluation/
network type

VGG-like
CNN (2 s

long
datasets)

VGG-like
CNN (0.5 s

long
datasets)

CNN-
LSTM (2 s

long
datasets)

CNN-
LSTM

(0.5 s long
datasets)

car-person-
bicycle
classification

78.6% 81.1% 50% 73.5%

car-person-2
people
classification

77.8% 88.6% 44.4% 78.3%

all-4-classes-
classification
(VGG LSTM)

— — — 70%
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architectures would benefit the classification performance if data
from additional aspect angles to the targets of interest can be
captured. In terms of radar signal processing, the detection,
tracking, and MD extraction presented in this study have been
achieved in ∼0.55 s computational time for 0.5 s long MD (on a
Python based implementation on a desktop machine). This shows
that the overhead latency of the radar processing is not very
significant, with respect to the amount of dwell time on the target
to collect data (0.5 s is fairly close to an average gait cycle of a
human walking). Moving away from MD-based classification,
perhaps exploiting other sequential radar domain with LSTMs as
mentioned before, could enable to avoid this minimal dwell time
requirement. Implementations in C++ or other languages more
suitable for low level programming in micro-controller units could
also allow for faster classification time and reduced latency, and
firmware improvements could speed up the data transfer from the
radar chip to the processing unit (50 ms for a single frame in this
work).

Additional further work could look at making the clutter
cancellation filter adaptive, taking into account the velocity and the
orientation of the vehicle carrying the radar, which for simplicity
has been considered stationary in this work. Fusion of data from
heterogeneous sensors (be it cameras, Lidar or other sensors) is
also an interesting area for further work to improve classification
performance and mutual learning of the classifiers.

Finally, research on different architectures of networks should
focus on evolution and predictability of their learning capability
and performance, making sure that this adheres to the relevant
regulations in the automotive sector for standardisation and safety
issues.
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